
Ada Runtime Error Generator

Functional Specification

Date:27/11/2020

Student: Derry Brennan

Student number: C00231080

Supervisor: Chris Meudec

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 1

DECLARATION
I hereby declare that this research project titled “Ada runtime error
generator” has been written by me under the supervision of Dr. Christophe
Meudec.

The work has not been presented in any previous research for the award of
bachelor degree to the best of my knowledge.

The work is entirely mine and I accept the sole responsibility for any errors
that might be found in the work, while the references to published materials
have been duly acknowledged.

I have provided a complete table of reference of all works and sources used
in the preparation of this document.

I understand that failure to conform with the Institute’s regulations
governing plagiarism constitutes a serious offence.

Signature: Derry Brennan Date: 29/04/2021

Derry Brennan (Student)

C00231080 (Student Number)

The above declaration is confirmed by:

Signature: Chris Meudec Date: 29/04/2021

Dr. Christophe Meudec (Project Supervisor)

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 2

Table of Contents
Table of Figures 3

1. Introduction 4

2. Project Description 4

3. Users 5

4. Use Cases 6
4.1 Ada Runtime Error Generator Use Case 6
4.1.1 Use case 1. 6

4.1.1.1 Brief Use Case 6
4.1.1.2 Detailed Use Case 6

4.2 Mika Visual Studio Code Extension Use Case 8
4.2.1 Use case 1. 8

4.2.1.1 Brief Use Case 8
4.2.1.2 Detailed Use Case 8

4.2.2 Use case 2. 9
4.2.2.1 Brief Use Case 9
4.2.2.2 Detailed Use Case 10

6. FURPS+ 11
6.1 Functionality 11

6.1.1 Core Functions 11
6.1.2 Secondary Functions 11

6.2 Usability 11
6.3 Reliability 11
6.4 Performance 11
6.5 Supportability 12

7. Metrics 12

8. Testing 12

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 3

Table of Figures
Figure 1 Ada runtime error generator Use case diagram 6
Figure 2 Mika Visual Studio Code Extension Use Case 8

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 4

1. Introduction
As technology expands throughout the world, taking control of complex
tasks such as avionics and missile control, the need to make sure such
software is free from as many errors as possible is of paramount
importance. Programming languages have many forms of error checking in
place already, with the integrated development environments having both
semantic and syntactic errors being detected as the code is being written.
But runtime errors are more difficult to find and not as much research and
development has gone into the finding of such errors before.

Runtime errors such as division by zero, integer overflow and index out of
bounds errors can cause a program to output unexpected results or to
cease functioning entirely, neither of which is a good result, especially
where lives are at stake.

Ada is a programming language that has its focus on safety and was seen
as an ideal candidate to provide the testing ground for such a tool.

The Ada runtime error generator will be a tool that can be used by an Ada
programmer who wishes to test their code for the presence of possible
runtime errors.

2. Project Description
It will take an Ada program as its input and then the Mika tool, a test data
generator will provide test data to achieve one hundred percent branch
coverage of the code. The code will then be run with the test data as its
inputs and the presence of runtime errors will be determined.

The tool will be constrained to a very limited subset of Ada that excludes
external library calls.

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 5

The tool aims to detect division by zero errors, integer overflows and the
possibility of detecting index out of bounds errors.

The tool aims to provide a detailed response to the user about what type of
runtime error was encountered and where it happened in the code, along
with the variable values that lead to the error. And the possibility of having
an exportable version of the report in LaTeX or a format of their choosing.

With this information the developer would be provided with suitable
information to implement a fix to prevent such errors from occurring in the
future.

The possibility of adding annotations to the code where the error was
found is also under consideration.

The test data generation will have to be steered towards values most likely
to cause runtime errors and through methods such as symbolic execution
the project aims to see if those values are possible within the constraints of
the given program.

An additional feature of the project is the development of a Visual Studio
Code extension to complement the Mika program that would allow a user
to select a line of code and generate test input for the code that would lead
a supplied boolean condition supplied by the user to be true.

This extension was selected to be used in Visual Studio Code as it is a very
popular text editor and has a broad ecosystem of extensions.

3. Users
Power user: Ada programmer.

This user would be comfortable with both the GUI and the command line
interface for interacting with the tool. They would understand terms related

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 6

to programming and runtime errors and do not need too much extra
explanations about terms.

4. Use Cases
4.1 Ada Runtime Error Generator Use Case

Figure 1 Ada runtime error generator Use case diagram

4.1.1 Use case 1.

Find Runtime Errors

4.1.1.1 Brief Use Case

Actor(s): Power User

Description: This use case begins with a power user supplying Ada code to
the Mika software. Beginning the parsing of this code which generates a
prolog file of the source code. Then selecting the exception flag as a
condition for running. Mika will perform symbolic execution on the supplied
code looking for variable conditions that would lead to a runtime error and
supply back a report to the user detailing the error found if any.

4.1.1.2 Detailed Use Case

Use Case : Find Runtime Errors

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 7

Scope : Supply code and generate test inputs that would cause
runtime errors if present

Level : Power User goal

Primary Actor : Power User

Stakeholders and Interests:

Power User: Wants to detect the possibility of runtime errors in the supplied
code.

Preconditions: Developer has windows 10 environment with Sicstus Prolog
and GNAT 2010 installed

Success Guarantee : Detection of runtime error if any present, lack of
finding runtime error still does not guarantee code safety just gives an
indication that no errors were found.

Main Success Scenario:

1.1 The power user selects the file that they want to carry out tests for
runtime errors on.

1.2 The power user then parses the file to generate the prolog code.

1.3 The Power user then selects the exception flag as a condition for the
generation of test inputs.

1.4 The power user conducts the test code generation.

1.5 Mika supplies back test input generation information with the variable
values that cause the runtime error to occur.

Alternatives:

1.5 No runtime errors found.

1.5.a Mika supplies a back report with no test input as no conditions
could be met to generate a runtime exception.

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 8

4.2 Mika Visual Studio Code Extension Use Case

Figure 2 Mika Visual Studio Code Extension Use Case

4.2.1 Use case 1.

Add Annotations

4.2.1.1 Brief Use Case

Actor(s): Power User

Description: This scenario begins when a Power User wants to add a
special comment to an Ada file that will allow them to generate a test input
report for the variables mentioned within the comment.

4.2.1.2 Detailed Use Case

Use Case : Add Annotations

Scope : Add special comment into the specific line of code

Level : Power user Goal

Primary Actor : Power User

Stakeholders and Interests:

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 9

Power User: Power user wants to add a comment into their code that will
allow the extension to generate test input.

Preconditions: The code supplied is Ada code and open in the main tab of
visual studio code.

Success Guarantee: If the special comment is inserted into the selected
line of code.

Main Success Scenario:

1.1 The Power User opens an Ada file in Visual Studio Code.

1.2 The Power user moves the cursor to the desired line to insert a Mika
comment.

1.3 The Power user then selects the command menu in Visual Studio Code
and chooses “Mika Ada annotations”.

1.4 The comment is inserted at the cursor's position in the code.

1.5 The Power User then alters the default area of the comment to their
desired boolean condition.

4.2.2 Use case 2.

Generate Test Input

4.2.2.1 Brief Use Case

Actor(s): Power User

Description: This use case begins after adding a Mika comment is inserted
into the code and the condition is specified, the Power User then runs the
“Mika generate test inputs” command from the command menu in Visual
Studio Code. A report is then generated and displayed within Visual Studio
Code if Mika finds conditions that make the supplied comment be true.

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 10

4.2.2.2 Detailed Use Case

Use Case : Generate Test Input

Scope : Generate Test input for variables at a specific line of
code to match supplied condition

Level : Power user Goal

Primary Actor : Power User

Stakeholders and Interests:

Power User: Wants to generate test input that will make a condition on a
certain line of code true for the supplied variables.

Preconditions: A Mika comment has been inserted within the code and that
the syntax of the boolean condition provided is valid Ada

Success Guarantee: A Report is displayed in an adjacent tab to the source
code with values for the variables that would make the supplied condition
true.

Main Success Scenario:

2.1 Power User opens the command Menu.

2.2 Power User selects the “Mika generate test inputs” command.

2.3 A report from Mika is displayed in a tab Adjacent to the source code.

2.4 The Power User can then save this document in a location of their
choosing.

Alternatives:

2.3 The provided or default Mika or GNAT paths within the extension are
invalid.

2.3.a An Error Message is displayed to the Power User stating this
fact.

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 11

6. FURPS+
6.1 Functionality

The functionality of the Ada Runtime Error Generator is mainly in the
detection of errors, but there are some other secondary functions to be
considered too.

6.1.1 Core Functions

● Detection of division by zero

● Detailed report on found error

● Detection of integer overflow

● Detection of index out of bounds

6.1.2 Secondary Functions

● Visual Studio Code extension for Mika

6.2 Usability

Ada runtime error generator requires Windows 10, the Mika test code
generation software, Sicstus Prolog and GNAT GPL 2010.

Other platforms are not supported yet, and the target language is Ada.

6.3 Reliability

The tool should be able to recover from failures 95% of the time and the
tool should run 99% of the time.

6.4 Performance

Addition of the runtime error checks should keep in track with the
performance of the Mika tool.

https://github.com/echancrure/Mika
https://sicstus.sics.se/download.html
https://sourceforge.net/projects/gnat-gpl/files/2010/

Ada Runtime Error Generator | Functional Specification

C00231080 | Derry Brennan | Page 12

6.5 Supportability

The code must be written with maintainability in mind with a detailed
research document detailing the steps taken to reach the desired outcome.

7. Metrics
To determine the success of the project to correct detection of runtime
errors within supplied test code should be found, the number of achievable
runtime errors that checks can be implemented for has yet to be
determined.

● It can detect errors within test code.

● It can run its tests within 10 seconds 95% of the time, highly
dependent on complexity.

8. Testing
Testing will be carried out using sample Ada code used to target the
runtime errors being targeted and an attempt to find suitable Ada code on a
resource such as GitHub to carry out tests on will be undertaken to test the
boundaries of the tool.

9. Conclusion
The project is mainly a research project that requires writing additional
functionality into the already existing Mika tool to support the handling of
runtime errors. The viability of whether this is even possible has yet to be
determined and hopefully the above functionalities will be met if it does
indeed prove to be possible.

